Hydrocarbons

1. Assertion (A): Kjeldahl method is not applicable to compounds containing nitrogen in nitro and azo groups and nitrogen present in the ring

Reason (R): Nitrogen of these compounds does not change to ammonium sulphate under these conditions.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 2. Assertion (A): Nitrogen, Sulphur, halogens and phosphorus present in an organic compound are detected by "Lassaigne's test"

Reason (R): The elements present in the compound are converted from covalent form into the ionic form by fusing the compound with sodium metal.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3.** Assertion (A): Rate of reaction of alkanes with halogens is $F_2 > Cl_2 > Br_2 > I_2$.

Reason (R): Rate of Fluorination is too violent to be controlled & iodination is very slow and a reversible reaction

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): Arrangements of atoms which can be converted into one another by rotation around a C-C single bond are called conformation or conformers or rotamers

Reason (R): Rotation around a C-C single bond is hindered by a small energy barrier of 1-20 kJ mol⁻¹

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** Nitration of benzene with nitric acid requires the use of concentrated sulphuric acid.

Reason (R): The mixture of concentrated sulphuric acid and concentrated nitric acid produces the electrophile, NO_2^+ .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** Heterolytic fission involves the breaking of covalent bond in such a way that both the electrons of the shared pair are carried away by one the atoms

Reason (R): Heterolytic fission occurs readily in polar covalent bonds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

 Assertion (A): Boiling point of alkanes increases with increase in molecular weight.

Reason (R): Van der Waal's forces increase with increase in molecular weight

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8. Assertion (A):** Sodium acetate on kolbe's electrolysis gives methane

Reason (R): Methyl free radical is formed at anode

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **9. Assertion (A):** Wurtz reaction is not a good method to prepare propane.

Reason (R): Wurtz reaction leads to the formation of symmetrical alkane having an even number of carbon atom.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **10. Assertion (A):** Chlorination of methane can takes place in sunlight

Reason (R): Methyl chloride formed as major product if Cl₂ present in excess.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

11. Assertion (A): Iodination of alkane is reversible

Reason (R): Iodination of alkane is carried out in presence of iodic acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** Ethene is more reactive than ethyne towards electrophilic addition reaction.

Reason (R): Intermediate formed by ethene is more stable than ethyne in Electrophilic addition reaction

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 13. Assertion (A): Hydroxylation of cisalkene of the type RCH = CHR by alkaline KMnO₄ solution (cold and dilute) yields meso product RCH(OH) CH(OH)R.

Reason (R): Hydroxylation by cold and dilute and alkaline solution of KMnO₄ is an anti-addition.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

14. Assertion (A): Rate of electrophilic aromatic nitration of C_6H_6 , C_6D_6 and C_6T_6 follows the order $C_6H_6 > C_6D_6 > C_6T_6$

Reason (R): The cleavage of C-H, C-D and C-T is involved in rate limiting step.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** Hydration of alkene using $Hg(OAc)_2 / H_2O$ followed by $NaBH_4$ is regioselective.

REASON (R): It involves carbocation formation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 16. Assertion (A):

$$CH_3 - CH = CH - O - CH_3 + HCI$$

Reason (R): $CH_3 - CH_2 - CH - O - CH_3$ is more stable than

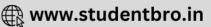
$$CH_3 - CH - CH_2 - O - CH_3$$
.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

17. Assertion (A): Chlorination in alkane is less reactive more selective.

Reason (R): Bromination in alkane is more reactive less selective.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** Bromination of cis-2-butene gives racemic mixture.


Reason (R): Bromination to alkene is anti-addition.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **19. Assertion (A):** Alkenes are more reactive than alkynes towards bromination.

Reason (R): Cyclic bromonium ion formed by alkene is more stable than that formed by alkyne.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY																		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Ans.	1	1	1	1	1	1	1	4	1	3	2	1	3	4	3	1	4	1	1